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ICARUS-T600 at LNGS laboratory
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Two identical modules 
l 3.6x3.9x19.6 ~275 m3 each 
l LAr active mass: 476 t 
l Drift length: 1.5 m (1 ms) 
l E=0.5 kV/cm, vdrift~1.5 mm/µs 
l Sampling time 0.4µs (sub-mm 

resolution in drift direction)  

Four  wire chambers: 2 chambers/ module 
l 2 Induction + 1 Collection readout wire planes 

per chamber; ~54000 wires, 3 mm pitch and 
plane spacing, oriented at 0°,±60°; 

l Charge measurement on last Collection plane 
20+54 8” PMTs for scintillation light detection: 
l VUV sensitive (128nm) with TPB wave shifter  



Selection of  νe events
•  ICARUS concluded in 2013 a very successful 3 year long run at LNGS; 
•  The T600 detector has been successfully exposed to CNGS beam from 

Oct. 1st 2010 to Dec. 3rd 2012: 8.6 1019 protons on target collected 
with a remarkable detector live time > 93 % and recording 2650 
CNGS neutrinos (in agreement with expectations) on 7.93 1019 pot 

•  Data taking conducted in parallel with c-rays to study atmospheric ν 
and p-decy (0.73 kty exposure); 

ICARUS T600 results
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Selection of  νe events
•  The relatively small number of recorded CNGS neutrino interaction 

events (~3000) allowed a semi automatic approach based on a pre-
selection of events followed by a careful visual analysis of all physically 
interesting data; the reconstructed objects can be saved/modified 
using a flexible ROOT-based I/O system 

•  The developed software framework is based on:  
Ø Central package (fullreco) for data decoding, basic reconstruction  
Ø Qt-based event display (Qscan) for visualization/scanning and 

human interface 
Ø Event loop code (AnalysisLoop) for batch analyses and ROOT I/O  
Ø Higher-level analysis tools (Muon momentum by MCS, EM shower 

reconstruction, particle identification, 3D reconstruction…); 
Ø Interface with FLUKA for analysis/visualization of simulated 

events; 
Ø Interface with mySQL for access to DB; 

ICARUS T600 software framework
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Selection of  νe eventsQscan event display for the ICARUS events
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Typical νµCC event (Collection view) 

~4.5 m  ~7 GeV deposited energy 

1.5m drift 

muon is ~13m long 

•  Qscan is a qt-based tool for a fast visualization of events in the T600:  
Ø the 2D projections associated to the wire planes are shown using a 

grey/color scale based on signal height/deposited energy; 
Ø the waveforms of wires and PMT signals can be displayed and fast 

Fourier transform tool available, useful for noise monitoring 

Typical MIP signal in Coll. 



Selection of  νe events
•  A physical “hit” in the detector is identified as a wire signal above a 

defined threshold computed over local mean (baseline) for a long 
enough time (in order to avoid fake hits from noise spikes); threshold in 
Collection: 4 ADC#, typical m.i.p. signal: 15 ADC# 

•  Conditions on the threshold, minimum width and fall time for the hits 
change for the different views (Induction 1, Induction 2, Collection); 

Signal reconstruction: hit finding (fullreco)
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•  Dedicated tools developed to filter out 
detector or read-out electronics effects 
that can worsen wires S/N ratio, 
degrading the capability to identify 
physical signals:  
Ø Spurious hits induced from PMT 

signals filtered out; 

Ø 100 kHz noise removed; 
Ø Isolated low hits removed. 



Selection of  νe events
•  Clusters are connected sets of hits in a 2D view corresponding to a 

physical particle; they can be created by:  
Ø An automatic algorithm developed for simple topologies (single 

tracks, low-multiplicity interactions): aligned and connected hits 
grouped and then segments are merged based on direction angle and 
distance between end-points; 

Ø A manual procedure in Qscan used by scanners for more complex 
topologies, typically showers: all the hits inside a polygonal line 
defined by the scanner are assigned to the same cluster; 

Cluster reconstruction (fullreco)
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polyline 
cluster 

•  The clusters can be matched between different views as input for the 
3D reconstruction; vertices and reference points can be also associated 
to the clusters; 



Selection of  νe events
•  Reference points and vertices can be defined to mark interesting 

features of the event in a 2D view (primary interaction, delta rays, 
decay point of tracks, shower features, muon begin/end point for the 
momentum measurement via MCS); 

•  They can be selected manually in Qscan and can be associated to 
clusters and matched between different views providing additional 
input to 3D reconstruction; 

•  An automatic tool for the primary vertex identification is available; 
•  Reference points and vertices can be saved in root files; 

Reference points and vertices

Slide#  : 9ICARUS_2015



Selection of  νe events
•  Precise and unbiased measurement of hit area is a key point for the 

calorimetry since the deposited energy on each wire is proportional to 
integral of wire signal in Collection view; 

Measurement of the deposited energy (fullreco)

Slide#  : 10ICARUS_2015

•  Physical “hits” are fitted with function                                                  
considering a large interval (±70 samples) 
around the peak) in order to obtain a 
precise baseline B estimation  

•  Procedure for fitting overlapping hits 
from different close physical tracks or 
long hits from inclined tracks available 

•  Hit area is then converted in deposited 
energy taking into account the 
appropriate calibration constants, purity 
and quenching corrections; 

•  The sum over all the hits belonging to the same clusters 
gives estimate of the particle deposited energy  

 (typical τ1~3µs, τ2~0.9µs)  



Selection of  νe events
•  The electron lifetime τele measurement is a key feature for a precise 

measurement of the deposited energy in the events; a fully automatic 
procedure to monitor online the attenuation λ = 1/τele  has been prepared 
for the LNGS run;  

•  First step: selection of through-going cosmic-ray muons 

Purity measurement in ICARUS T600
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Ø Rejection of noisy wires to reduce “fake” hits that 
can mimic a physical activity inside the detector; 

Ø Identification of the physical event region; 
Ø Selection of events based on the number of hits in 

Collection view, on their relative position and 
energy: at least 100 wires and 1450 t-samples (400 
ns each) occupied and 0.8 < Nhits / Nwires < 1.1;  

Ø Recursive rejection of hits at more than 3 mm 
distance from the track is applied: residual δ-rays 
along the track are removed; 



Selection of  νe eventsPurity measurement: method description - 2
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Survived hits 
Removed hits  

Survived hits 
Removed hits  

•  λ = 1/τele  obtained by a fit of the charge 
attenuation along each selected tracks 
after a 2 step procedure to remove the 
asymmetric Landau tail of the dE/dx 
distribution (to remove large non Gaussian 
fluctuations);  

•  The final value of λ = 1/τele  estimated as 
the average of λtrack  on 100 tracks;  



3D track reconstruction
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● Automatic algorithm, starting from 2D tracks in each view; 
● Polygonal Line Algorithm (PLA) based on simultaneous optimization of all 2D 

projections to match data on wire planes;  
● PLA track fit constructed iteratively introducing additional node along the 

track and recalculating the fitted track direction; 
● Fit minimizes at each step a function G depending on the distance between 

the track and the fitted projection and taking into account the track 
curvature and the available constraint on the track; 

●  Iteration stops when the maximum number of nodes is reached; 

ICARUS_2015

 

 

 

Physical track 

Fitted track 



3D reconstruction example
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● 3D algorithm tested on 
single tracks and more 
complex topologies; 

● Similar logic can be also 
extended to 3D vertex and 
shower reconstruction; 

ICARUS_2015
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dE/dx measurement
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● Calorimetry and 3D reconstruction allow accurate dE/dx measurement 
● MIP ionization density distribution (Landau+Gaussian) agrees well with 

expectations in LAr 
● Study of MIP cosmic muons has been developed to monitor possible 

disuniformity in detector response; 
● dE/dx measurement key feature for the electron/photon separation; 
 

1 m.i.p. 
2 m.i.p. 

1 m.i.p. 
2 m.i.p. 

•  MC: single electrons (Compton) 
•  MC: e+ e– pairs (γ conversions) 
•  data: EM cascades (from π0 decays) 

MC 

Simulated and collected 
muon tracks from CNGS 

νµCC  
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 dE/dx (MeV/cm) vs. 
residual range (cm) for 
protons,π,µ compared to 
Bethe-Bloch curves 

Particle identification

● Behaviour of dE/dx vs. range allows to estimate mass and identify a 
stopping particle track; 

● Particle identification (PID) implemented on neural network; 
● Pion/kaon/proton separated with high efficiency >95% 
● Pion/muon separation more marginal;  

Slide#  : 16ICARUS_2015



Measurement of muon momentum via multiple scattering
•  Multiple Coulomb Scattering (MCS) is the only way to measure momentum 

of non-contained muons and so it is crucial for νµCC events 
•  Algorithm based on evaluation of average RMS of deflection angles θRMS 

(Collection view), compared with expectations for a given p (assuming 
Gaussian approximation of MCS) 
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(Δp/p )CAL~1 % 

Last meter of tracks not used for MCS 
measurement, to emulate case of escaping muons 

•  Stopping muons are the ideal subsample      
for validating MCS algorithm: 
Ø Independent momentum measurement 

from calorimetry; 
Ø Momentum spectrum in a region of 

interest for future SB/LB neutrino 
experiments; ● Algorithm validated on ~400 stopping muons: 

produced in νµCC interactions of CNGS 
neutrinos upstream of T600, and stopping/
decaying inside the detector 

23
0
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lX

l
p
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Muon momentum measurement algorithm 
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● Visual scanning for the µ identification 
● 3D automatic reconstruction and visual validation of the muon track; 

Final ~5m of muon 

“Good” hits for MCS 
Delta rays (charge) 
Last meter (excluded from MCS) 

σy ~ 0.7 mm 

● Automatic track cleaning procedure, to avoid 
non-Gaussian tails (mainly δ-rays); 

● Precise track-to-track estimation of 
measurement errors σy using the drift 
coordinate dispersion on short distances ~cm 
to minimize MCS effect 

● Track segmentation, optimized to enhance 
MCS contribution while reducing statistically 
the effect of errors 

● Track deflection computed between two 
consecutive segments in 2D Collection view; 

TRACK CLEANING 

Measurement error 



Muon momentum measurement results
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momentum resolution for 
effective track lengths 

Some deviations for p > 3.5 GeV/c induced  
by non-perfect planarity of TPC cathode  
 

L = 4 m 
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Initial p from calorimetry -> 

● Good agreement between MCS and 
calorimetric measurements 

● Average resolution of ~15% on the stopping 
muon sample 

● Resolution depends both on momentum and 
effective muon track length used for 
measurement 

 

Ratio MS/ 
calorimetry  

L = 4 m 



Monte Carlo simulation with FLUKA

● Detailed and realistic MC simulation based on FLUKA 
● Fortran packages provide particle transport and energy deposition in 

space/time cells and provide also MC vertex information; 
● Fullreco classes generate signals on wires starting from the FLUKA cells 

and considering the known electronic response;  
● All known detector effects (diffusion, electron recombination, impurities 

in LAr) and the electronic noise, based on measurement during LNGS, 
realistically simulated. 

20 

MC νµCC event, ~5GeV 

~3m 

~1.5m 

ICARUS_2015
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Selection of  νe eventsSearch for ν events in CNGS beam: visual scanning
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Scanning window 

Standard processing for the events collected in CNGS spill:  
•  Automatic rejection of empty events; 
•  Visual scanning of the events by 2 different scanners and first 

classification in neutrino/muon from the rock/residuals; 
•  Visual scanning of ν candidates: event with primary vertex inside the 

fiducial volume (1.5 cm from detector walls, 5 cm upstream, 15 cm 
downstream) are classified as νµCC - νNC- νe candidate; 

•  νµ CC identified by L>2.5 m long track without hadronic interactions; 
•  ν events with an e.m. shower at primary vertex are selected as νe cand. for 

further analysis  



Selection of  νe events

• The “Electron signature” requires: 
Ø A charged track from primary vertex, m.i.p. on at least 8 wires, 

subsequently building up into a shower; very dense sampling: every 
0.02 X0; 

Ø Isolation (150 mrad) from other ionizing tracks near the vertex in at 
least one of the TPC views.  

• Electron efficiency has been studied by visual scanning with events from 
a MC (FLUKA) reproducing in every detail the signals from wire planes: η 
= 0.74 ± 0.05 (η’ = 0.65 ± 0.06 for intrinsic νe beam  due to its harder 
spectrum). 

• νe CC candidates are visually selected 
with vertex inside a restricted fiducial 
volume (for shower id.) : > 5 cm from 
TPC walls and 50 cm downstream 

• Energy <30 GeV 
Ø  50% reduction on intrinsic beam νe 
Ø only 15% signal events rejected νe MC event 

Search for ν-e events in CNGS beam
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Identified electron ν interactions 
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Single M.I.P 

• Globally 2650 ν events in the analyzed 7.93 1019 pot (out of the fully 
collected statistics of 8.6 1019 pot) studied in details to identify the 
electron neutrino interactions: 7 electron neutrino events identified (8.5 
± 1.1 expected taking into account the detection efficiency) 



•  Manual selection of stopping particles 
(muons, pions, protons), to be 
identified by PID algorithm; 

•  Selection of π0 candidate: separation 
of the 2 showers (if possible) to 
reconstruct π0 invariant mass  

•  All the information stored in root 
files; 

Selection of  νe eventsVisual scanning for the neutrino event reconstruction 

Slide#  : 24ICARUS_2015

•  The selected neutrino events are visually studied in details to extract 
all the physical information; this careful reconstruction by physicists is 
perfectly suitable for the number of expected events; 

•  Total deposited energy estimated;  
•  Muon cluster identified in the νµ CC events;  
•  In νe candidate, electron hits are grouped manually to ensure the 

separation between the e-shower and the hadronic activity, dE/dx at 
the beginning of the shower and longitudinal profile automatically 
reconstructed Selected 

primary vertex  

Collection view 



Conclusions

ICARUS_2015
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•  Exposed in Gran Sasso underground Lab. to CNGS neutrino beam, the 
ICARUS T600 neutrino experiment with 760 ton of highly purified LAr has 
successfully completed a three years physics program at LNGS: 2650 
neutrino interactions (7.93 1019 p.o.t.) have been studied in details and 7 νe 
have been identified.  

•  The ICARUS collaboration has developed during many years a complex 
system of tools for event display, scanning, reconstruction and analysis; 

•  Extensive T600 experience allowed us to develop, debug and tune 
algorithms in a real large-scale experiment environment; 

•  Visualization and interface with physicist are crucial functionalities for a 
detailed study and identification of the ν interaction and for the validation 
and improvements of the reconstruction; 

•  The relatively small number of interesting events allowed a semi-automatic 
approach in the analysis: while some parts of basic reconstructions are 
automatized, the general event classification and particle selection was 
left to human scanners. 
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Thank you ! 
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